首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3329篇
  免费   30篇
  国内免费   46篇
  2023年   16篇
  2022年   13篇
  2021年   22篇
  2020年   40篇
  2019年   68篇
  2018年   92篇
  2017年   26篇
  2016年   32篇
  2015年   92篇
  2014年   199篇
  2013年   174篇
  2012年   151篇
  2011年   228篇
  2010年   212篇
  2009年   205篇
  2008年   227篇
  2007年   235篇
  2006年   152篇
  2005年   126篇
  2004年   159篇
  2003年   103篇
  2002年   88篇
  2001年   40篇
  2000年   55篇
  1999年   45篇
  1998年   45篇
  1997年   40篇
  1996年   40篇
  1995年   45篇
  1994年   30篇
  1993年   35篇
  1992年   34篇
  1991年   27篇
  1990年   22篇
  1989年   14篇
  1988年   20篇
  1987年   30篇
  1986年   13篇
  1985年   18篇
  1984年   24篇
  1983年   19篇
  1982年   30篇
  1981年   17篇
  1980年   27篇
  1979年   22篇
  1978年   7篇
  1977年   12篇
  1976年   11篇
  1974年   5篇
  1972年   5篇
排序方式: 共有3405条查询结果,搜索用时 923 毫秒
151.
152.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   
153.
Colon cancer cells, like other types of cancer cells, undergo the remodeling of the intracellular Ca2+ homeostasis that contributes to cancer cell hallmarks including enhanced cell proliferation, migration, and survival. Colon cancer cells display enhanced store-operated Ca2+ entry (SOCE) compared with their non-cancer counterparts. Colon cancer cells display an abnormal expression of SOCE molecular players including Orai1 and TRPC1 channels, and the stromal interacting molecule (STIM) 1 and 2. Interestingly, upregulation of Orai1 and TRPC1 channels and their contribution to SOCE are associated with cancer malignancy in colon cancer cells. In a specific cellular model of colon cancer, whereas in non-cancer colon cells SOCE is composed of the Ca2+ release activated (CRAC) currents, in colon cancer cells SOCE is composed of CRAC- and cationic, non-selective store operated (SOC) currents. Former SOCs are mediated by TRPC1 channels. Moreover, colon cancer cells also display dysregulation of the expression of 1,4,5-triphosphate receptors (IP3R) that could contribute to the enhanced SOCE. Another important factor underlying the enhanced SOCE is the differential mitochondrial modulation of the CRAC and SOC currents in non-cancer and colon cancer cells. In colon cancer cells, mitochondria take up more Ca2+ that prevent the Ca2+-dependent inactivation of the SOCs, leading to sustained Ca2+ entry. Notably, the inhibition of SOCE in cancer colon cells abolishes their cancer hallmarks. Robust evidence has shown the efficiency of non-steroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO) to reverse the enhanced cell proliferation, migration, and apoptosis resistance of cancer cells. In colon cancer cells, both NSAIDs and DFMO decrease SOCE, but they target different molecular components of SOCE. NSAIDs decrease the Ca2+ uptake by mitochondria, limiting their ability to prevent the Ca2+-dependent inactivation of the SOCs that underlie SOCE. On the other hand, DFMO inhibits the expression of TRPC1 channels in colon cancer cells, eliminating their contribution to SOCE. The identification of players of SOCE in colon cancer cells may help to better understand the remodeling of the Ca2+ homeostasis in cancer. Importantly, the use of different pharmacological tools that target different SOCE molecular players in colon cancer cells may play a pivotal role in designing better chemoprevention strategies.  相似文献   
154.
155.
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.  相似文献   
156.
光周期和温度对布氏田鼠产热的影响   总被引:8,自引:4,他引:8  
李庆芬  黄晨西 《动物学报》1995,41(4):362-369
布氏田鼠(Microtus brandti)分组驯化在:(1)长光照温暖环境(LW,16L:8D,25℃);(2)长光照 低温环境(LC,16L:8D,5℃);(3)短光照温暖环境(SW,8L:16D,25℃);(4)短光照低温环境(SC, 8L:16D,5℃)。驯化四周后,长光照动物的体重比短光动物的体重有增加的趋势;四组动物的体温 没有明显差异;低温和短光照均促使静止代谢率(RMR)增加;SC组动物的非颤抖性产热(NST)高 于LW组。低温诱导肝和褐色脂肪组织(BAT)细胞线粒体蛋白增加,短光照再度地增强此作用。短 光照诱导肝细胞线粒体状态-4及状态-3呼吸活力增加,低温没有明显作用。低温和短光照均刺激肝 和BAT线粒体细胞色素C氧化酶活力提高,但后者作用强度大于前者。低温明显激活BAT线粒体 的a-磷酸甘油氧化酶的活力,短光照无明显影响、结果表明:低温和短光照均能提高布氏田鼠的产 热能力,短光照与低温因子两者的协同作用增强了对布氏四鼠热能代谢的调节。  相似文献   
157.
VDAC forms the major pathway for metabolites across the mitochondrial outer membrane. The regulation of the gating of VDAC channels is an effective way to control the flow of metabolites into and out of mitochondria. Here we present evidence that actin can modulate the gating process of Neurospora crassa VDAC reconstituted into membranes made with phosphatidylcholine. An actin concentration as low as 50 nm caused the VDAC-mediated membrane conductance to drop by as much as 85% at elevated membrane potentials. Actin's effect could be quickly reversed by adding pronase to digest the protein. α-Actin, from mammalian muscle, has a stronger effect than β- and γ-actin from human platelets. The monomeric form of actin, G-actin, is effective. Stabilization of the fibrous form, F-actin, with the mushroom toxin, phalloidin, blocks the effect of actin on VDAC, indicating that F-actin might be ineffective. Cytochalasin B did not interfere with the ability of actin to favor VDAC closure. DNase-I did effectively block actin's effect on VDAC, and VDAC decreased actin's inhibitory effect on DNase-I activity, indicating that N. crassa VDAC competes with DNase-I for the same binding site on actin. The actin-VDAC interaction might be a mechanism by which actin regulates energy metabolism. Received: 28 August 2000/Revised: 1 December 2000  相似文献   
158.
Little is currently known concerning the mechanisms responsible for the excessive deposition of redox-active iron in the substantia nigra of subjects with Parkinson's disease (PD). In the present study, we demonstrate that dopamine promotes the selective sequestration of non-transferrin-derived iron by the mitochondrial compartment of cultured rat astroglia and that the mechanism underlying this novel dopamine effect is oxidative in nature. We also provide evidence that up-regulation of the stress protein heme oxygenase-1 (HO-1) is both necessary and sufficient for mitochondrial iron trapping in dopamine-challenged astroglia. Finally, we show that opening of the mitochondrial transition pore (MTP) mediates the influx of non-transferrin-derived iron into mitochondria of dopamine-stimulated and HO-1-transfected astroglia. Our findings provide an explanation for the pathological iron sequestration, mitochondrial insufficiency, and amplification of oxidative injury reported in the brains of PD subjects. Pharmacological blockade of transition metal trapping by "stressed" astroglial mitochondria (e.g., using HO-1 inhibitors or modulators of the MTP) may afford effective neuroprotection in patients with PD and other neurological afflictions.  相似文献   
159.
160.
Mitochondria at the Crossroad of Apoptotic Cell Death   总被引:8,自引:0,他引:8  
In the past few years, it has become widely appreciated that apoptotic cell death generallyinvolves activation of a family of proteases, the caspases, which undermine the integrity ofthe cell by cleavage of critical intracellular substrates. Caspases, which are synthesized asinactive zymogens, are themselves caspase substrates and this cleavage leads to their activation.Hence, the potential exists for cascades of caspases leading to cell death. However, it has beenrecently recognized that another, perhaps more prominent route to caspase activation, involvesthe mitochondria. Upon receipt of apoptotic stimuli, either externally or internally generated,cells initiate signaling pathways which converge upon the mitochondria to promote release ofcytochrome C to the cytoplasm; cytochrome c, thus released, acts as a potent cofactor incaspase activation. Even cell surface death receptors such as Fas, which can trigger directcaspase activation (and potentially a caspase cascade), appear to utilize mitochondria as partof an amplification mechanism; it has been recently demonstrated that activated caspases cancleave key substrates to trigger mitochondrial release of cytochrome c, thereby inducing furthercaspase activation and amplifying the apoptotic signal. Therefore, mitochondria play a centralrole in apoptotic cell death, serving as a repository for cytochrome c.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号